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EXECUTIVE SUMMARY 
The objective of this research was to provide a comprehensive plan for charging infrastructure 
deployment that supports the adoption and use of electric vehicles in Illinois based on the latest 
historical data, research, and practice. The research was guided by forming a statewide electric 
vehicle infrastructure committee that identified priorities for sustainable passenger vehicle 
electrification pathways and provided feedback on research outcomes. The models and data analytics 
tools developed enabled the Illinois Department of Transportation and the State of Illinois to identify 
timelines for electric vehicle charging infrastructure deployment to support electric vehicle travel 
across Illinois interstates and highways. The questions that guided this research are listed below: 

• What is the number and timeline for deploying fast charging stations across clustered regions 
in Illinois to meet carbon dioxide reduction goals while transitioning away from fossil-fueled 
vehicles and facilitating the adoption and use of passenger electric vehicles? 

• Which are the most suitable census tracts for charging infrastructure across the State of 
Illinois when accounting for a diverse set of economic, societal, and environmental justice 
criteria aligned with enabling greater benefits from passenger vehicle electrification in 
disadvantaged communities? 

• Which charging hubs are critical to serving low-income households and multi-unit dwelling 
residents who conduct intercity trips along the Illinois interstates’ network? 

The goal of enabling the adoption and travel of one million electric vehicles by 2030 on Illinois roads 
is achieved when charging infrastructure investments increase gradually, following an S-shaped curve 
and reaching a maximum level of coverage during the first 10 to 15 years of the transition horizon 
from fossil-fueled to electric vehicles. The maximum number of charging stations depends on the 
emission-reduction goal set; the more ambitious the environmental goal, the greater the number of 
charging stations that should be deployed. For example, consider a goal of reducing carbon dioxide 
emissions from the operation of light-duty vehicles (based on the transition from fossil-fueled and 
electric vehicle mix) by 3.95 107 metric tons of CO2. The deployment of electric vehicle charging 
stations should be greater than 2,400 public fast charging station locations and be built in 10 to 15 
years (initial year of analysis 2020) to enable electric vehicle users and adopters to accrue greater 
benefits from electrifying their vehicle miles traveled. Market considerations like the availability of 
home charging influence consumers’ choices and drivers’ electrified travel distance, charging stations 
should be prioritized for frequent long-distance drivers, and spatial effects are crucial in accurately 
capturing the demand for electric vehicles in Illinois. 

A multi-criteria suitability map for siting electric vehicle charging stations is proposed using the 
analytical hierarchy process. The mapping is based on economic, societal, and environmental justice 
indicators. We identify census tracts that should be prioritized during Illinois’ statewide deployment 
of charging infrastructure along with interstates and major highways that traverse them. Major 
interstates and highways I-90, I-80, I-55, and I-57 are identified as having high siting suitability scores 
for charging stations and could be prioritized under the assumption of equally weighting the diverse 
set of siting criteria.  
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CHAPTER 1: INTRODUCTION 

ELECTRIC VEHICLE CHARGING INFRASTRUCTURE PLANNING 
Transportation is one of the primary energy consumers in the United States and the only sector 
depending almost exclusively on petroleum (U.S. Energy Information Administration, 2021a). The 
entry of electric vehicles into the transportation market promises diversification of this sector’s fuel 
sources. Plug-in electric vehicles have zero tailpipe emissions due to operating solely on electricity. 
Hence, substituting conventional gasoline vehicles with electric ones can reduce carbon dioxide and 
greenhouse gas emissions (depending on the source of electricity used for charging) and gasoline 
consumption for the transportation sector (Rietmann et al., 2020). The U.S. Energy Information 
Administration’s (2021b) outlook of net electricity generation by fuel type shows that the proportion 
of renewable energy is estimated to increase over time, which implies that the emissions associated 
with electric vehicle charging will also decrease. However, due to the higher purchase price of electric 
vehicles than comparable conventional vehicle products, lack of dense charging station 
infrastructure, and induced range anxiety, consumers have little intention to purchase electric 
vehicles (Canepa et al., 2019; Carley et al., 2013). Countries with higher electric vehicle penetration 
rates implement various policies to stimulate demand and accelerate environmental gains from their 
use. Such policies and incentives include rebates, tax credits, charging station deployment, etc. (Zhou 
et al., 2015). Monetary incentives, like rebates, discount an electric vehicle’s capital cost, and 
investments in a dense charging network result in driver savings that are accrued from lower 
operating costs. Electric vehicles are promoted by policymakers through tax credits and other 
incentives partly because of their potential to reduce tailpipe emissions (Kontou et al., 2017) and 
gradually improve regional air quality (Brady & O’Mahony, 2011). 

To design an effective incentives and infrastructure investment allocation program, we need to 
understand how different policies might influence electric vehicle adoption and which programs play 
a crucial role in accelerating the electrification transition. Hardman et al. (2017) find that 91% of 
pertinent studies indicate that electric vehicle rebates play a significant role in increasing electric 
vehicle adoption. Hardman et al. (2017) and Narassimhan and Johnson (2018) also point out that 
rebates are usually more effective in driving ownership decisions than tax credits. Charging 
availability is another important electric vehicle demand determinant. Hardman et al. (2018) 
conclude that access to electric vehicle charging at home, work, or public locations increases 
consumers’ willingness to purchase electric vehicles. Kontou et al. (2019) show the importance of 
charging availability on electric vehicle daily trip feasibility and coverage. Recognizing that rebates 
and charging infrastructure provision promote the electrification of personal mobility, we provide a 
framework to determine priorities for incentives investments that mathematically captures electric 
vehicle market penetration. Monetary incentives, such as rebates, discount significant capital costs 
associated with purchasing electric vehicles in the introductory years of this new technology when 
economies of scale are not yet achieved (Helveston et al., 2015). At the same time, investing in public 
charging infrastructure placement contributes to reducing the operational costs of electric vehicle 
drivers and decreases environmental externalities associated with conducting daily trips by 
electrifying more miles.  
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Equity in the siting of electric vehicle charging infrastructure is multifaceted and increasingly valued 
by public agencies. Equity could be aligned with environmental externalities reduction and justice 
objectives. Distributive equity assessment studies reveal that housing type and income level 
significantly impact home charging installation and availability; communities with fewer resources 
have little intention to adopt clean energy technologies. In addition, high-income population groups 
are usually able to charge their electric vehicles in privately owned parking, which might not be an 
option for lower-income renters and apartment complex residents. Therefore, public charging 
infrastructure should not only be prioritized in high-income communities, whose members tend to be 
early electric vehicle adopters, but also in low-income areas where residents need reliable access to 
charging infrastructure and incentives to adopt zero-tailpipe emission technology. To achieve 
equitable electric vehicle adoption, public charging infrastructure investments should be allocated in 
communities designated as disadvantaged. Few studies use data-driven models to address equity, 
even though distributive equity is elevated as the primary scope of local, regional, and federal 
decision-makers. We, thus, develop a data-driven charging infrastructure suitability map through an 
analytical hierarchy process leveraging economic, societal, and environmental justice considerations, 
with a focus on prioritizing census tracks for charging infrastructure placement in the state of Illinois. 

OBJECTIVES 
The main objective of this research project is to assess public charging infrastructure requirements 
over time and space to facilitate electrified intercity travel through major interstate highways in 
Illinois. We develop and extend state-of-the-art literature approaches to achieve the following goals: 

• Estimate electric vehicle adoption over a 30-year planning horizon to achieve greenhouse gas 
reduction goals. 

• Determine electric vehicle charging infrastructure investment allocation and deployment 
across the state of Illinois to support projected levels of passenger vehicle electrification. 

• Assess the environmental benefits and operational costs associated with passenger vehicle 
electrification. 

• Coordinate a statewide electric vehicle steering committee that identifies priorities for 
sustainable electrification pathways.  

The analysis enables decision-makers to have a blueprint that quantifies electric vehicle charging 
deployment pathways and the environmental benefits of the transition from fossil-fueled to 
electrified mobility. 

We study the problem of dynamic electric vehicle infrastructure investment allocation from the 
perspective of public decision-makers, who aim to meet statewide emission-reduction targets for 
Illinois’ light-duty vehicle sector and provide policy recommendations. Our research contributes to 
the transportation planning and policy literature in the following ways: (i) we introduce a new and 
dynamic electric vehicle incentive design problem with emission-reduction targets and demand 
functions that capture network externalities; (ii) we present a simulated annealing algorithm to solve 
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the highly nonlinear problem; and (iii) we provide a plethora of policy and planning recommendations 
from a real-world case study focusing on the State of Illinois. By evaluating diverse electric vehicle 
investment portfolio outcomes, we aim to comprehensively describe the decision-making mechanism 
and provide suggestions for governmental policies that incentivize electric vehicle growth and 
transportation decarbonization. 

We also develop a suitability map to site charging stations for electric vehicles based on economic, 
societal, and environmental justice indicators. Using the analytic hierarchy process (AHP), commonly 
applied in multi-criteria decision-making for geographic information system applications, we identify 
Illinois census tracts and regions that could be prioritized for the statewide deployment of electric 
vehicle charging stations in Illinois. 

Coordinating a statewide electric vehicle steering committee identifies priorities for sustainable 
electrification pathways (Kócs, 2021). A series of meetings were held involving academics, public 
agencies, private stakeholders, and nongovernmental organizations, while research and state-of-
practice webinars promoted discussion on the following topics: (i) electric vehicle infrastructure and 
technology needs, (ii) utility service coordination, and (iii) environmental justice and equity 
considerations. A summary list of the events and committee members’ agencies involved in these 
discussions is highlighted in Table 1. 

Table 1. Electric Vehicle Steering Committee Participants and Events Overview 

Committee Stakeholders Session Types 

Electric vehicle 
steering 
committee 

a) Illinois Department of Transportation 
b) Stakeholders from Illinois academic 
institutions (UIUC, UIC, Northwestern 
University, etc.) 
c) Automakers 
d) Charging infrastructure providers 
e) Utility service providers 
f) Nongovernmental organizations 
g) Environmental protection agencies 
h) National laboratory researchers  
(e.g., Argonne National Laboratory) 
i) Equity and environmental justice groups 

Three webinars providing summaries of 
research progress. 
Q&A sessions and feedback during the 
1.5 hours of fast-paced meetings to 
receive feedback on: 
(i) criteria for charging infrastructure 
planning and placement in highways, 
and (ii) relative weighting of the 
importance of a diverse set of criteria 
for charging infrastructure placement. 
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CHAPTER 2: DYNAMIC CHARGING INFRASTRUCTURE PLANNING 
Light-duty electric vehicle cumulative sales reached 1.8 million during the final quarter of 2020 in the 
United States. Electric vehicles have zero tailpipe emissions and substantially lower life-cycle 
emissions compared to conventional ones, particularly when charging with low carbon intensity 
electricity (Tessum et al., 2014). Electrification of light-duty and portions of medium- and heavy-duty 
transportation is a necessary step to put the United States on the path to achieve goals to reduce 
carbon dioxide and other pollutants over the next 30 years (National Academy of Sciences, 
Engineering, and Medicine, 2021). In addition, electric vehicles benefit drivers by significantly 
decreasing their operational costs and energy consumption (Kontou et al., 2015, 2017). Due to such 
advantages, transportation electrification can be a major contributor toward reaching national 
energy security goals (Kelly et al., 2012; Ogden et al., 2004). However, existing barriers to widespread 
electric vehicle adoption include short driving ranges of plug-in vehicles that induce range anxiety 
(i.e., the fear of exhausting the driving range before reaching a destination or charging infrastructure) 
and a sparse network of charging infrastructure inadequate to fully support daily short- and long-
distance travel needs. 

To promote and densify the interstate charging infrastructure network, the Federal Highway 
Administration (FHWA, 2021) designates interstate segments as “electric vehicle charging corridor 
ready” when the sited public direct-current (DC) fast charging stations are separated by less than 50 
miles and located no greater than 5 miles off the highway. Fast charging stations are essential to the 
conduct of long-distance habitual and nonhabitual trips and will be the backbone of commercial 
fleets’ electrification, which will rely primarily on depot and highway charging outlet deployment 
(Davis & Figliozzi, 2013; Lee et al., 2013). 

In September 2022, there are 50,994 electric vehicle registrations in Illinois and more than 900 
charging station locations of all levels available to support electrified transportation operations. 
Figure 1 (left) presents the 2020 status of passenger vehicle electrification in Illinois, portraying the 
ratio of electric vehicles to total registrations per county. The share of electric vehicles in 2020 was 
0.36% compared to 0.25% during 2019. Cook, DuPage and Lake counties lead the electric vehicle 
transition, while Chicago suburb counties as well as McLean, Champaign, St. Clair, and Madison 
counties have growing electric vehicle numbers. Figure 1 (right) portrays the locations of charging 
stations and the number of charging outlets in 2020. According to the latest 2022 U.S. Department of 
Energy data (2022c), there are 642 DC fast charging station ports in Illinois. 

Through the Climate and Equitable Jobs Act, the State of Illinois has set the goal of increasing electric 
vehicle registrations to one million by 2030. Strategically planning public charging infrastructure 
deployment that can facilitate the movement of passenger electric vehicles is necessary to meet 
these ambitious electric vehicle adoption targets.  

In the existing literature, state-of-the-art methods for electric vehicle charging infrastructure 
investment allocation, siting, and value include macroscopic models and network facility location 
mathematical frameworks (e.g., Greene et al., 2020; He et al., 2013; Nie et al., 2016; Shahraki et al., 
2015). However, there is limited literature studying the optimal rollout of charging station 
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infrastructure (Kontou et al., 2017); such a roadmap is necessary for meeting passenger travel 
demand and allocating appropriate investments. Our research amends research gaps by developing a 
macroscopic optimization framework to determine the number of electric vehicle chargers to meet 
carbon dioxide emission-reduction targets over a 30-year planning horizon (i.e., 2020–2050). 

 
Figure 1. Graph. Electric vehicle registration share and charging infrastructure in Illinois (in 2020). 

METHODOLOGY 
Our model’s objective is to conserve investment resources for the deployment of public charging 
infrastructure (i.e., minimizing deployment costs) while meeting policymaking goals related to 
achieving passenger transportation emission-reduction targets.  

We assume that the planning horizon for the decision-maker is 𝑡𝑡 ∈ 𝑇𝑇 = {1,2, . . . ,𝑌𝑌}. During this 
period, investments will be allocated annually to deploy charging infrastructure, which will impact 
electric vehicle adoption and electrify more miles on the Illinois network. Variables 𝑥𝑥𝑘𝑘𝑡𝑡  denote the 
vehicle stock type 𝑘𝑘 ∈ { 𝑔𝑔: gasoline, 𝑒𝑒: electric} by year 𝑡𝑡. The consumers’ demand each year 𝑡𝑡, 𝑞𝑞𝑘𝑘𝑡𝑡 , is a 
function of the rebate 𝑟𝑟𝑡𝑡 provided at year 𝑡𝑡 to the adopters of electric vehicles and the charging 
infrastructure deployed at year 𝑡𝑡, 𝑢𝑢𝑡𝑡. All vehicles have an average lifespan of 𝑙𝑙 years and are replaced 
with new vehicles after reaching that year. The existing vehicle stock 𝑥𝑥𝑘𝑘𝑡𝑡  is a discrete-time system and 
is updated by the number of vehicles of each technology 𝑘𝑘 sold each 𝑡𝑡 and 𝑡𝑡 − 𝑙𝑙, as shown in Figure 2.  

𝑥𝑥𝑘𝑘𝑡𝑡+1 = 𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑞𝑞𝑘𝑘𝑡𝑡 (𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) − 𝑞𝑞𝑘𝑘𝑡𝑡−𝑙𝑙 

Figure 2. Equation. Discrete time system of vehicle stock. 

The state transition function in Figure 3 captures the dynamic nature of the charging infrastructure 
placement on the transportation network. 

𝑣𝑣𝑡𝑡+1 = 𝑣𝑣𝑡𝑡 + 𝑢𝑢𝑡𝑡 

Figure 3. Equation. State transition function of electric vehicle charging infrastructure. 
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Note that 𝑣𝑣𝑡𝑡 is the number of chargers in place up to year 𝑡𝑡 and 𝑢𝑢𝑡𝑡 is the number of chargers installed 
in year 𝑡𝑡. The decision variable in this case is 𝑢𝑢𝑡𝑡, which has an upper bound of 𝑣̅𝑣. This constraint 
ensures realistic density of the charging network.  

Demand 𝑞𝑞𝑘𝑘𝑡𝑡  for the vehicle technologies is a control variable. A logistic function denotes the sales of 
each vehicle technology 𝑘𝑘 in 𝑡𝑡, and the demand is a function of utility 𝑈𝑈𝑘𝑘𝑡𝑡 . The perceived utility of an 
average consumer is the sum of the indirect utility and an error component, as 𝑈𝑈𝑘𝑘𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) =
𝑉𝑉𝑘𝑘𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) + 𝜖𝜖𝑘𝑘𝑡𝑡  (Ben-Akiva & Lerman, 1985). We assume that all consumers are utility maximizers, 
aligned with literature on electric vehicle adoption studies (Javid & Nejat, 2017; Nie et al., 2016). 
Their logistic demand functions are shown in Figures 4 and 5. 

𝑞𝑞𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = �𝑚𝑚𝑡𝑡 + 𝑞𝑞𝑒𝑒𝑡𝑡−𝑙𝑙 + 𝑞𝑞𝑔𝑔𝑡𝑡−𝑙𝑙� ∙
𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�

𝑒𝑒𝑉𝑉𝑔𝑔
𝑡𝑡

+ 𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡)
  

Figure 4. Equation. Electric vehicle logistic demand function. 

𝑞𝑞𝑔𝑔𝑡𝑡 (𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = �𝑚𝑚𝑡𝑡 + 𝑞𝑞𝑒𝑒𝑡𝑡−𝑙𝑙 + 𝑞𝑞𝑔𝑔𝑡𝑡−𝑙𝑙� ∙
𝑒𝑒𝑉𝑉𝑔𝑔

𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�

𝑒𝑒𝑉𝑉𝑔𝑔
𝑡𝑡

+ 𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡)
  

Figure 5. Equation. Gasoline vehicle logistic demand function. 

The incremental market size of new vehicle registrations is 𝑚𝑚𝑡𝑡, and 𝑞𝑞𝑒𝑒𝑡𝑡−𝑙𝑙 and 𝑞𝑞𝑔𝑔𝑡𝑡−𝑙𝑙 are the number of 
vehicles purchased 𝑙𝑙 years ago that need to be replaced due to vehicle turnover. The probability of a 

consumer choosing an electric or a gasoline vehicle is 𝑒𝑒𝑉𝑉𝑒𝑒
𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�

𝑒𝑒𝑉𝑉𝑔𝑔
𝑡𝑡
+𝑒𝑒𝑉𝑉𝑒𝑒

𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�
 and 𝑒𝑒𝑉𝑉𝑔𝑔

𝑡𝑡 �𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�

𝑒𝑒𝑉𝑉𝑔𝑔
𝑡𝑡
+𝑒𝑒𝑉𝑉𝑒𝑒

𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�
 , respectively.  

Total cost, including capital and operational costs, and network externalities enter the utility 
functions of electric and gasoline vehicles, as in Figure 6 and Figure 7, respectively. The network 
externalities play an important role in explaining a portion of the utility of innovative products by 
describing purchasing choice learning-by-doing effects and the impact of information spread. 
Information spreading by existing adopters is a factor that is accounted for in alternative-fuel vehicle-
choice modeling studies: a portion of the electric vehicle market penetration is assumed to be 
explained by the positive impact of “neighborhood effects” (Eppstein et al., 2011). Neighborhood or 
word-of-mouth effects can drive electric vehicle social exposure (Shepherd et al., 2012). The electric 
vehicle indirect utility function could capture the impact of information spreading under the 
assumption that the probability of choosing this vehicle type is more likely to increase as the number 
of vehicles adopted increases in a certain region. A logarithmic function is used to capture such 
effects, penalizing low electric vehicle adoption or low charging infrastructure availability: when the 
electric vehicle stock or charging infrastructure approaches zero, the function goes to −∞; as their 
levels increase, it becomes zero (Cohen et al., 2016). 

𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = 𝛽𝛽1 ∙ �𝐵𝐵𝑒𝑒𝑡𝑡(R) − 𝑟𝑟𝑡𝑡 + 𝑂𝑂𝑒𝑒𝑡𝑡(𝑢𝑢𝑡𝑡)� + 𝛽𝛽2 ∙ 𝑙𝑙𝑙𝑙 �
𝑥𝑥𝑒𝑒𝑡𝑡

𝑥𝑥𝑒𝑒𝑡𝑡 + 𝑥𝑥𝑔𝑔𝑡𝑡
� + 𝛽𝛽3 ∙ 𝑙𝑙𝑙𝑙 �

𝑣𝑣𝑡𝑡

𝑣̅𝑣
� + 𝛽𝛽4 + 𝜔𝜔𝑡𝑡 

Figure 6. Equation. Electric vehicle utility function. 
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𝑉𝑉𝑔𝑔𝑡𝑡 = 𝛽𝛽1 ∙ �𝐵𝐵𝑔𝑔𝑡𝑡 + 𝑂𝑂𝑔𝑔𝑡𝑡� + 𝜔𝜔𝑡𝑡 

Figure 7. Equation. Gasoline vehicle utility function. 

Note that 𝑂𝑂𝑒𝑒𝑡𝑡(𝑢𝑢𝑡𝑡) and 𝑂𝑂𝑔𝑔𝑡𝑡 are the annual vehicle operating costs for the corresponding type of 
vehicles, and 𝜔𝜔𝑡𝑡 is the random demand. Electric vehicles with different driving ranges, R, correspond 
to different retail prices.  

The logit model captures the consumers’ choice and behavior, which accounts for features like 
vehicle capital cost, operational cost, and network externalities. The utility shows consumers’ 
attitudes and how they consider purchasing different vehicle technologies. Their decisions are based 
on the utility they perceive. Because we are planning for vehicle electrification at a macroscopic level, 
we hypothesize that charging infrastructure will be optimally located and provide adequate service, 
but we do not track network-level impacts of such infrastructure that might be associated with exact 
siting locations and their waiting times. Operational costs for each vehicle type 𝑘𝑘 are presented in 
Figures 8 and 9. 

𝑂𝑂𝑒𝑒𝑡𝑡(𝑢𝑢𝑡𝑡) = (𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡) ∙
𝑃𝑃𝑒𝑒𝑡𝑡

𝑛𝑛𝑒𝑒𝑡𝑡
+ 𝑑𝑑3𝑡𝑡 ∙ ��

𝑃𝑃𝑔𝑔𝑡𝑡

𝑛𝑛𝑔𝑔𝑡𝑡
� + 𝑓𝑓� 

Figure 8. Equation. Electric vehicle operating cost function. 

𝑂𝑂𝑔𝑔𝑡𝑡 = 𝑑𝑑𝑡𝑡𝑡𝑡 ∙
𝑃𝑃𝑔𝑔𝑡𝑡

𝑛𝑛𝑔𝑔𝑡𝑡
 

Figure 9. Equation. Gasoline vehicle operating cost function. 

where 𝑑𝑑1𝑡𝑡  is the average distance traveled on electricity depleting the battery charged at home, 𝑑𝑑2𝑡𝑡  is 
the average distance traveled on electricity depleting the battery charged at public charging stations, 
𝑑𝑑3𝑡𝑡  is the average distance traveled with a backup gasoline vehicle, while 𝑑𝑑𝑡𝑡𝑡𝑡 denotes the average 
annual miles traveled as the sum of 𝑑𝑑1𝑡𝑡 , 𝑑𝑑2𝑡𝑡 , and 𝑑𝑑3𝑡𝑡  in year 𝑡𝑡. 𝑃𝑃𝑒𝑒𝑡𝑡 is the cost of electricity for charging, 
𝑛𝑛𝑒𝑒𝑡𝑡  is the onboard electricity efficiency, 𝑃𝑃𝑔𝑔𝑡𝑡 is the gasoline cost, 𝑛𝑛𝑔𝑔𝑡𝑡  is the gasoline efficiency, and 𝑓𝑓 is 
the fixed cost to own or rent a backup gasoline vehicle. Note that 𝑑𝑑𝑡𝑡𝑡𝑡, 𝑑𝑑1𝑡𝑡 , 𝑑𝑑2𝑡𝑡 , and 𝑑𝑑3𝑡𝑡  are calculated as 

𝑑𝑑𝑡𝑡𝑡𝑡 = ∫ 𝑝𝑝𝑡𝑡(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥 ∙ 312∞
0 , while 𝑑𝑑1𝑡𝑡 = γ ∙ ∫ 𝑝𝑝𝑡𝑡(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥 ∙ 312𝑅𝑅

0  and �𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡 − �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣𝑣�
�� ∙

𝑑𝑑𝑡𝑡𝑡𝑡� ≤ 𝑀𝑀(1 − 𝑦𝑦𝑡𝑡) as well as �𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡 − �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣𝑣�
�� ∙ 𝑑𝑑𝑡𝑡𝑡𝑡� ≥ −𝑀𝑀𝑦𝑦𝑡𝑡 hold. Electrified distance 

due to access to public charging stations is calculated from 𝑑𝑑2𝑡𝑡 = (𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡) ∙ 𝑦𝑦𝑡𝑡 + �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣𝑣�
�� ∙

𝑑𝑑𝑡𝑡𝑡𝑡 ∙  (1 − 𝑦𝑦𝑡𝑡) and the remaining distance covered by a backup vehicle is 𝑑𝑑3𝑡𝑡 = 𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡 − 𝑑𝑑2𝑡𝑡 . The 
probability density function of the daily vehicle miles traveled (VMT) in year 𝑡𝑡 is 𝑝𝑝𝑡𝑡(𝑥𝑥), and γ is the 
percentage of availability of home charging for electric vehicle drivers.  
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The average daily VMT is calculated as the integration from 0 to ∞, and the average distance that can 
be traveled with electricity charged at home is calculated as the integration from 0 to the vehicle 
driving range boundary denoted by 𝑅𝑅 (Lin, 2014). The probability density function is the distribution 
of the daily vehicle miles traveled. To calculate the annual distance, the daily travel distance is 
multiplied by 312, as vehicles are assumed to be used on average 312 days per year (Melaina et al., 
2016). Based on a Weibull distribution of daily travel, Greene et al. (2020) find that a logarithmic 
function of charging availability can describe well the proportion of annual miles traveled that can be 

electrified. Thus, the product �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣𝑣�
�� ∙ 𝑑𝑑𝑡𝑡𝑡𝑡 calculates the annual enabled electrified miles 

that could be traveled with the corresponding number of charging stations 𝑣𝑣𝑡𝑡. Parameters 𝛼𝛼0𝑡𝑡  and 𝛼𝛼1𝑡𝑡 
are estimated based on the fitted logarithmic function, according to the daily VMT distribution and 
the vehicle’s average driving range. If the electric vehicle’s driving range is long enough and the 
number of charging stations is adequate (i.e., the enabled electrified distance by the number of 
public charging stations is long enough to cover all travel distances when the driver cannot charge at 
home), drivers would not need backup vehicles to complete nonhabitual trips. Thus, binary variables 
𝑦𝑦𝑡𝑡 and a big M are introduced. If the potential enabled electrified miles are greater than all travel 
distances covered without charging at home, 𝑦𝑦𝑡𝑡 will become 1 due to constraints (11a) and (11b), 

otherwise 𝑦𝑦𝑡𝑡 will be 0. When 𝑦𝑦𝑡𝑡 equals 1, 𝑑𝑑2𝑡𝑡  will be equal to 𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡  instead of �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣𝑣�
�� ∙

𝑑𝑑𝑡𝑡𝑡𝑡, and 𝑑𝑑3𝑡𝑡  will be zero. 

Figures 10 and 11 represent the carbon emissions of each technology that have a similar form as the 
operational costs. 

𝐸𝐸e𝑡𝑡(𝑣𝑣𝑡𝑡) = (𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡) ∙ 𝐶𝐶𝑒𝑒𝑡𝑡 + 𝑑𝑑3𝑡𝑡 ∙ 𝐶𝐶𝑔𝑔𝑡𝑡 

Figure 10. Equation. Carbon dioxide emissions function related to electric vehicle operation.  

𝐸𝐸g𝑡𝑡 = 𝑑𝑑𝑡𝑡𝑡𝑡 ∙ 𝐶𝐶𝑔𝑔𝑡𝑡 

Figure 11. Equation. Carbon dioxide emissions function related to gasoline vehicle operation.  

𝐶𝐶𝑒𝑒𝑡𝑡 and 𝐶𝐶𝑔𝑔𝑡𝑡 are carbon dioxide emissions in grams per mile for each vehicle technology. Although 
electric vehicles have zero tailpipe emissions, there are carbon emissions from the electricity 
generation that is consumed while charging. Thus, to calculate 𝐶𝐶𝑒𝑒𝑡𝑡, we convert the electricity 
generation carbon emission rate (gCO2/kWh) into gCO2/mile with the electric vehicle efficiency. Table 
2 summarizes the mathematical notations used in the optimization model. 
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Table 2. Summary of Mathematical Notation 

𝑡𝑡 ∈ 𝑇𝑇 The set of years that policymakers allocate incentives 
𝑘𝑘 ∈ {𝑔𝑔, 𝑒𝑒} 𝑔𝑔: conventional vehicle, 𝑒𝑒: electric vehicle 
𝑟𝑟𝑡𝑡 Rebate offered per electric vehicle in year 𝑡𝑡 
𝑞𝑞𝑘𝑘𝑡𝑡  Consumers demand of vehicle type 𝑘𝑘 in year 𝑡𝑡 
𝑢𝑢𝑡𝑡 Number of charging infrastructures installed in year 𝑡𝑡 
𝜏𝜏 Charging infrastructure’s cost 
𝛿𝛿 Discount factor 
𝑥𝑥𝑘𝑘𝑡𝑡  Vehicle stock of vehicle type 𝑘𝑘 in year 𝑡𝑡 
𝑙𝑙 Vehicle’s life expectance 
𝑣𝑣𝑡𝑡 Number of charging infrastructures in place up to year 𝑡𝑡 
𝑚𝑚𝑡𝑡 The incremental market size of new vehicle registrations in year 𝑡𝑡 
𝑉𝑉𝑘𝑘𝑡𝑡 Utility of vehicle type 𝑘𝑘 in year 𝑡𝑡 
𝐵𝐵𝑘𝑘𝑡𝑡  Purchase price of vehicle type 𝑘𝑘 in year 𝑡𝑡 
𝑂𝑂𝑘𝑘𝑡𝑡  The operational cost of vehicle type 𝑘𝑘 in year 𝑡𝑡 
𝑑𝑑1𝑡𝑡  Average distance traveled on electricity charged at home in year 𝑡𝑡 
𝑑𝑑2𝑡𝑡  Average distance traveled on electricity charged at public chargers in year 𝑡𝑡 
𝑑𝑑3𝑡𝑡  Average distance traveled with a backup vehicle in year 𝑡𝑡 
𝑑𝑑𝑡𝑡𝑡𝑡 Average annual miles traveled in year 𝑡𝑡 
𝑃𝑃𝑒𝑒𝑡𝑡 Cost ($/kWh) of electricity for charging the vehicle in year 𝑡𝑡 
𝑃𝑃𝑔𝑔𝑡𝑡 Gasoline cost ($/gal) in year 𝑡𝑡 
𝑛𝑛𝑒𝑒𝑡𝑡  On-board electricity efficiency (mi/kWh) in year 𝑡𝑡 
𝑛𝑛𝑔𝑔𝑡𝑡  Gasoline efficiency (mi/gal) in year 𝑡𝑡 
𝑓𝑓 Fixed cost ($/mi) for the backup gasoline vehicle 
𝛾𝛾 The ratio of people having access to home charging 
𝑅𝑅 Electric vehicle driving range (mi) 
𝑝𝑝𝑡𝑡(𝑥𝑥) The probability density function of daily miles driven in year 𝑡𝑡 
𝛼𝛼0𝑡𝑡 ,𝛼𝛼1𝑡𝑡 Parameters for the annual enabled electrified miles in year 𝑡𝑡 

𝑦𝑦𝑡𝑡 Binary variable in year 𝑡𝑡 to ensure the annual enabled electrified miles do 
not exceed the total annual driving distance. 

𝐸𝐸𝑘𝑘𝑡𝑡  Carbon dioxide emissions (gCO2) of vehicle type 𝑘𝑘 in year 𝑡𝑡 
𝐶𝐶𝑒𝑒𝑡𝑡 Carbon dioxide emission (gCO2/mi) rate of electricity generation in year 𝑡𝑡 
𝐶𝐶𝑔𝑔𝑡𝑡 Carbon dioxide emission (gCO2/mi) rate of gasoline vehicle in year 𝑡𝑡 
𝑟̅𝑟 Upper bound of rebate 
𝑣̅𝑣 Upper bound of the number of charging infrastructures in place 
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The complete nonlinear mixed-integer programming framework proposed for modeling the dynamic 
charging infrastructure investment problem is presented below. 

𝑚𝑚𝑚𝑚𝑚𝑚  𝑧𝑧 = � (𝑟𝑟𝑡𝑡 ∙ 𝑞𝑞𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) + 𝜏𝜏 ∙ 𝑢𝑢𝑡𝑡)/(1 + 𝛿𝛿)𝑡𝑡
𝑡𝑡∈𝑇𝑇

 

Figure 12. Equation. Objective function.  

subject to 

𝑥𝑥𝑘𝑘𝑡𝑡+1 = 𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑞𝑞𝑘𝑘𝑡𝑡 (𝑟𝑟𝑡𝑡,𝑣𝑣𝑡𝑡) − 𝑞𝑞𝑘𝑘𝑡𝑡−𝑙𝑙,∀𝑘𝑘 ∈ {𝑒𝑒,𝑔𝑔},∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 13. Equation. Discrete time vehicle stock constraints.  

𝑣𝑣𝑡𝑡+1 = 𝑣𝑣𝑡𝑡 + 𝑢𝑢𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 14. Equation. Discrete time charging infrastructure constraints.  

𝑞𝑞𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = �𝑚𝑚𝑡𝑡 + 𝑞𝑞𝑒𝑒𝑡𝑡−𝑙𝑙 + 𝑞𝑞𝑔𝑔𝑡𝑡−𝑙𝑙� ∙
𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�

𝑒𝑒𝑉𝑉𝑔𝑔
𝑡𝑡

+ 𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡)
 ,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 15. Equation. Electric vehicle demand constraints.  

𝑞𝑞𝑔𝑔𝑡𝑡 (𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = �𝑚𝑚𝑡𝑡 + 𝑞𝑞𝑒𝑒𝑡𝑡−𝑙𝑙 + 𝑞𝑞𝑔𝑔𝑡𝑡−𝑙𝑙� ∙
𝑒𝑒𝑉𝑉𝑔𝑔

𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡�

𝑒𝑒𝑉𝑉𝑔𝑔
𝑡𝑡

+ 𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡)
 ,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 16. Equation. Gasoline vehicle demand constraints.  

𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = 𝛽𝛽1 ∙ �𝐵𝐵𝑒𝑒𝑡𝑡(R) − 𝑟𝑟𝑡𝑡 + 𝑂𝑂𝑒𝑒𝑡𝑡(𝑢𝑢𝑡𝑡)� + 𝛽𝛽2 ∙ 𝑙𝑙𝑙𝑙 �
𝑥𝑥𝑒𝑒𝑡𝑡

𝑥𝑥𝑒𝑒𝑡𝑡 + 𝑥𝑥𝑔𝑔𝑡𝑡
� + 𝛽𝛽3 ∙ 𝑙𝑙𝑙𝑙 �

𝑣𝑣𝑡𝑡

𝑣̅𝑣
� + 𝛽𝛽4 + 𝜔𝜔𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 17. Equation. Electric vehicle utility constraints.  

𝑉𝑉𝑔𝑔𝑡𝑡 = 𝛽𝛽1 ∙ �𝐵𝐵𝑔𝑔𝑡𝑡 + 𝑂𝑂𝑔𝑔𝑡𝑡� + 𝜔𝜔𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 18. Equation. Gasoline vehicle utility constraints.  

𝑂𝑂𝑒𝑒𝑡𝑡(𝑢𝑢𝑡𝑡) = (𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡) ∙
𝑃𝑃𝑒𝑒𝑡𝑡

𝑛𝑛𝑒𝑒𝑡𝑡
+ 𝑑𝑑3𝑡𝑡 ∙ ��

𝑃𝑃𝑔𝑔𝑡𝑡

𝑛𝑛𝑔𝑔𝑡𝑡
� + 𝑓𝑓� ,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 19. Equation. Operating cost of electric vehicle constraints.  
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𝑂𝑂𝑔𝑔𝑡𝑡 = 𝑑𝑑𝑡𝑡𝑡𝑡 ∙
𝑃𝑃𝑔𝑔𝑡𝑡

𝑛𝑛𝑔𝑔𝑡𝑡
,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 20. Equation. Operating cost of gasoline vehicle constraints.  

𝑑𝑑𝑡𝑡𝑡𝑡 = � 𝑝𝑝𝑡𝑡(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥 ∙ 312
∞

0
,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 21. Equation. Operating cost of electric vehicle constraints.  

𝑑𝑑1𝑡𝑡 = γ ∙ � 𝑝𝑝𝑡𝑡(𝑥𝑥)𝑥𝑥𝑥𝑥𝑥𝑥 ∙ 312
𝑅𝑅

0
,∀𝑡𝑡 ∈ 𝑇𝑇 

�𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡 − �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣̅𝑣
�� ∙ 𝑑𝑑𝑡𝑡𝑡𝑡� ≤ 𝑀𝑀(1 − 𝑦𝑦𝑡𝑡),∀𝑡𝑡 ∈ 𝑇𝑇 

�𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡 − �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣̅𝑣
�� ∙ 𝑑𝑑𝑡𝑡𝑡𝑡� ≥ −𝑀𝑀𝑦𝑦𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 

𝑑𝑑2𝑡𝑡 = (𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡) ∙ 𝑦𝑦𝑡𝑡 + �𝛼𝛼0𝑡𝑡 + 𝛼𝛼1𝑡𝑡𝑙𝑙𝑙𝑙 �
𝑣𝑣𝑡𝑡

𝑣̅𝑣
�� ∙ 𝑑𝑑𝑡𝑡𝑡𝑡 ∙  (1 − 𝑦𝑦𝑡𝑡),∀𝑡𝑡 ∈ 𝑇𝑇 

𝑑𝑑3𝑡𝑡 = 𝑑𝑑𝑡𝑡𝑡𝑡 − 𝑑𝑑1𝑡𝑡 − 𝑑𝑑2𝑡𝑡 ,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 22. Equation. Distance constraints.  
 

𝐸𝐸e𝑡𝑡(𝑣𝑣𝑡𝑡) = (𝑑𝑑1𝑡𝑡 + 𝑑𝑑2𝑡𝑡) ∙ 𝐶𝐶𝑒𝑒𝑡𝑡 + 𝑑𝑑3𝑡𝑡 ∙ 𝐶𝐶𝑔𝑔𝑡𝑡 ,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 23. Equation. Electric vehicle emission constraints.  

 
𝐸𝐸g𝑡𝑡 = 𝑑𝑑𝑡𝑡𝑡𝑡 ∙ 𝐶𝐶𝑔𝑔𝑡𝑡,∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 24. Equation. Gasoline vehicle emission constraints.  

 

� 𝑥𝑥𝑒𝑒𝑡𝑡 ∙ �𝐸𝐸𝑔𝑔𝑡𝑡 − 𝐸𝐸𝑒𝑒𝑡𝑡(𝑣𝑣𝑡𝑡)�
𝑡𝑡∈𝑇𝑇

≥ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Figure 25. Equation. Exogenous emission-reduction target constraint. 
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𝑥𝑥𝑘𝑘𝑡𝑡 , 𝑣𝑣𝑡𝑡 ≥ 0,∀𝑘𝑘 ∈ {𝑒𝑒,𝑔𝑔},∀𝑡𝑡 ∈ 𝑇𝑇 

𝑣𝑣1 = 𝜁𝜁, 𝑢𝑢𝑡𝑡 ≥ 0, 𝑣𝑣𝑡𝑡 ≤ 𝑣̅𝑣,∀𝑡𝑡 ∈ 𝑇𝑇 

𝑥𝑥𝑘𝑘1 = 𝜃𝜃𝑘𝑘 ,∀𝑘𝑘 ∈ {𝑒𝑒,𝑔𝑔} 

𝑦𝑦𝑡𝑡 ∈ {0,1},∀𝑡𝑡 ∈ 𝑇𝑇 

Figure 26. Equation. Decision variable domain constraints.  

The decision variable of this model is the number of chargers built each year, i.e., 𝑢𝑢𝑡𝑡. In Figure 12, we 
present the objective function, which is the government’s cumulative expenditure for the electric 
vehicle incentives allocation over the years. Our goal is to minimize the total expenditure. Note that 𝜏𝜏 
is the cost of charging infrastructure, and 𝛿𝛿 is the discount factor. The constraint in Figure 25 enforces 
the target of emission-reduction savings due to electric vehicles substituting gasoline vehicles over a 
set planning horizon. A variety of potential incentive investment paths can achieve the cumulative 
emission-reduction target, and we aim to find and analyze the incentive portfolio with the least 
expenditure among these pathways. Figure 26 shows non-negativity and variable restriction 
constraints, setting feasibility intervals for the decision variables. 

The optimization framework is solved using the simulated annealing algorithm (Wu & Kontou, 2022). 

ILLINOIS CASE STUDY 
The developed optimization framework can be applied to different spatial scales. We focus on Illinois 
as the area of our case study. According to the Climate and Equitable Jobs Act (CEJA, SB2408), Illinois 
plans to provide a $4,000 rebate starting July 1, 2022, $2,000 starting July 1, 2026, and $1,000 
starting July 1, 2028, for the purchase of an electric vehicle and aims to meet the adoption goal of 
1,000,000 electric vehicles by 2030 (Public Act 102-0662, 2021). We aim to determine the number of 
charging stations needed to induce adoption levels aligned with CEJA goals. 

Data 
Vehicle adoption data and parameter values need to be collected and analyzed to accurately estimate 
the utility function coefficients of a higher-resolution vehicle ownership model and capture 
consumers’ behavior. National-level data like vehicle range, vehicle lifespan, vehicle efficiency, etc. 
can be adopted directly to a state-level analysis. However, different values for the data of the number 
of vehicles, fuel prices, emission rates, and daily VMT need to be included in the study to realistically 
represent the Illinois vehicle market. Table 3 presents the pertinent Illinois scalar parameters and 
Table 4 the dynamic parameters. 
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Table 3. Input Scalar Parameters of the Illinois Vehicle Market 

Constant Parameters Unit Value 

Vehicle range, 𝑅𝑅 mi 150 

Access to home charging, 𝛾𝛾 – 84% 

Vehicle’s lifespan, 𝑙𝑙 year 12 

Chargers upper bound, 𝑣̅𝑣 – 4,113 

No. of chargers in the first year, 𝜁𝜁 – 637 

No. of electric vehicles in the first year, 𝜃𝜃𝑒𝑒  – 26,153 

No. of gas vehicles in the first year, 𝜃𝜃𝑔𝑔  – 6,997,674 

Cost to build a charging station, 𝜏𝜏 $ 150,000 

Discount factor, 𝛿𝛿 – 0.1 

Due to a lack of Illinois or nationwide data, the home charging accessibility percentage is based on 
survey data from California (Tal et al., 2018). The upper bound of the number of charging stations is 
set to the number of existing gas stations to ensure a realistic density of the charging network. 
Gasoline station data for Illinois are collected from the Office of the Illinois State Fire Marshal (2022). 
Historical data of electric vehicle registration in Illinois are from the Office of the Illinois Secretary of 
State (2022).  

Table 4. Input Parameters of the Illinois Vehicle Market 

Dynamic Parameters Unit Y 2021 Y 2030 Y 2040 Y 2050 

Incremental market size, 𝑚𝑚𝑡𝑡  – 0 0 0 0 

Electric vehicle retail price, 𝐵𝐵𝑒𝑒𝑡𝑡  $ 25,347 28,180 31,328 34,476 

Gas vehicle retail price, 𝐵𝐵𝑔𝑔𝑡𝑡  $ 30,101 29,042 27,865 26,689 

Electricity cost, 𝑃𝑃𝑒𝑒𝑡𝑡  $/kWh 0.105 0.110 0.108 0.094 

Electricity efficiency, 𝑛𝑛𝑒𝑒𝑡𝑡   mi/kWh 2.924 2.932 2.931 2.931 

Gasoline cost, 𝑃𝑃𝑔𝑔𝑡𝑡  $/gal 2.326 2.723 3.038 3.587 

Gasoline efficiency, 𝑛𝑛𝑔𝑔𝑡𝑡   mi/gal 48.908 50.860 50.253 49.563 

Emission rate of electricity, 𝐶𝐶𝑒𝑒𝑡𝑡  gCO2/mi 72.725 61.670 67.690 85.976 

Emission rate of gasoline, 𝐶𝐶𝑔𝑔𝑡𝑡  gCO2/mi 177.199 153.542 127.256 100.970 

Mean of daily VMT  mi 72.725 61.670 67.690 85.976 

Median of daily VMT  mi 72.725 61.670 67.690 85.976 
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After using linear regression to track the incremental vehicle market increase over time, R square is 
found close to 0. Thus, we assume there is no growth in vehicle registrations over time. We fit a linear 
function using historical data of the most popular vehicle of each fuel technology to predict their 
future retail price trend. For the electric vehicle, we use Nissan Leaf, and for the gasoline vehicle 
Toyota Camry. Data on gasoline fuel and electricity pricing trends are collected directly from the 
outlook data of the U.S. Energy Information Administration (2018). We use the mid-case outlook data 
of the CO2 from electricity generation [kg/MWh] (equivalent to gCO2/kWh) for the State of Illinois 
(National Renewable Energy Laboratory, 2020). We then convert the emission rate of the electricity 
generation into gCO2/mi, by using the electricity efficiency data. We select the Illinois trip data from 
the National Household Travel Survey to predict the mean and median daily VMT (U.S. Department of 
Transportation, 2021).  

Model Modification 
The Climate and Equitable Jobs Act (CEJA, SB2408) (Public Act 102-0662, 2021) specifically sets the 
Illinois plan for the electric vehicle rebates allocation. We consider rebates given as parameters. We 
fit the logit demand model with the state-level data to estimate the coefficients of each variable and 
run the simulation. However, due to the huge difference in the magnitude of historical data on the 
number of electric vehicles and the number of gasoline vehicles, we get a 𝛽𝛽2 (1304.19) much larger 
than 𝛽𝛽1 (-0.000259) and 𝛽𝛽4 (-4.512) in the equation of Figure 17. In later years, when the number of 

electric vehicles becomes greater, 𝛽𝛽2 ∙ �
𝑥𝑥𝑒𝑒𝑡𝑡

𝑥𝑥𝑒𝑒𝑡𝑡+𝑥𝑥𝑔𝑔𝑡𝑡
� and 𝑉𝑉𝑒𝑒𝑡𝑡 becomes too large, the value of 𝑒𝑒𝑉𝑉𝑒𝑒𝑡𝑡�𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡� 

approaches infinity. To capture spatial heterogeneity and dependence and other intangible factors 
such as views on new technologies that may vary continuously in space, we consider spatial effects, 
which could be significant in capturing the relative tendency of people to choose electric vehicles in 
different regions (Florax & Rey, 1995).  

Considering the accuracy and computation time for the solution by our optimization model and 
heuristic algorithm, we divide the state of Illinois into five clusters based on current electric vehicle 
adoption trends. The equation in Figure 17 is substituted by the equation in Figure 27, where 𝑦𝑦1, 𝑦𝑦2, 
𝑦𝑦3, and 𝑦𝑦4 is set to one for cluster 1, cluster 2, cluster 3, and cluster 4, respectively, and zero 
otherwise.  

𝑉𝑉𝑒𝑒𝑡𝑡(𝑟𝑟𝑡𝑡,𝑢𝑢𝑡𝑡) = 𝛽𝛽1 ∙ �𝐵𝐵𝑒𝑒𝑡𝑡(R) − 𝑟𝑟𝑡𝑡 + 𝑂𝑂𝑒𝑒𝑡𝑡(𝑢𝑢𝑡𝑡)� + 𝛽𝛽4+𝜔𝜔𝑡𝑡 + 𝛽𝛽5𝑦𝑦1 + 𝛽𝛽6𝑦𝑦2 + 𝛽𝛽7𝑦𝑦3 + 𝛽𝛽8𝑦𝑦4 

Figure 27. Equation. Utility function from electric vehicle, capturing spatial effects.  

Electric Vehicle Adoption Clusters 
We leverage the Jenks natural breaks (Jenks, 1967) classification method to divide Illinois into five 
clusters based on their electric vehicle share heterogeneity to account for regional demand 
differences. Figure 28(a) shows the county-level electric vehicle share in January 2021. The five 
clusters, based on current year 2021 adoption trends in Illinois, are shown in Figure 28(b), where 
cluster 5 is characterized by the highest electric vehicle adoption share and cluster 1 by the lowest. 
Table 5 demonstrates the number of gas stations, charging stations, and the number of gasoline and 
electric vehicles in the first year of our analysis for the five clusters. 
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We assume that the upper bound of the number of charging stations should be the same as the 
gasoline stations to achieve maximum coverage. Cluster 1 has the lowest electric vehicle share. It 
consists of rural counties in Illinois with the highest current availability of gas stations but the fewest 
charging ones. Counties in clusters 4 and 5 are mostly concentrated in the greater Chicago area, 
where electric vehicle adoption share and charging station coverage are higher.  

 
Figure 28. Graph. (a) Electric vehicle registrations share (Y 2021); (b) electric vehicle adoption 

clusters (1 corresponds to laggers and 5 to early electric vehicle adopters).  

Table 5. Clusters of Electric Vehicle Ownership in Illinois and Charging Infrastructure 

Cluster No. of gas 
stations 

No. of charging 
stations 

No. of gasoline 
vehicles in the first 

year (2021) 

No. of electric 
vehicles in the first 

year (2021) 
Cluster 1 1,672 9 266,300 113 

Cluster 2 879 32 815,717 713 

Cluster 3 751 50 979,246 1,803 

Cluster 4 459 417 3,862,688 15,497 

Cluster 5 352 129 1,073,723 8,027 
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Illinois Charging Infrastructure Deployment Results 

Base Case 
We optimize the number of charging infrastructures for each cluster, compared to the do-nothing 
scenario and the maximum emission-reduction scenario for each cluster. The emission reduction for 
the do-nothing scenario is 3.76∙ 107 metric tons of CO2 and the maximum emission reduction is 
4.14∙ 107 metric tons of CO2. We set the emission-reduction target for the base case to 
3.76∙ 107+0.5×(4.14∙ 107-3.76∙ 107) = 3.95∙ 107 metric tons of CO2. Tables 6, 7, and 8 demonstrate 
the predicted number of electric and gasoline vehicles for each cluster in different years under the 
do-nothing scenario, base case, and maximum emission-reduction scenario, respectively. If no 
charging station investments are provided, 997,212 electric vehicles will be adopted in 2030, which is 
close to the goal of the State of Illinois; while for the base case and maximum emission-reduction 
targets, CEJA’s goal of one million vehicles is reached. The growth of the electric vehicle share in each 
cluster is presented in Figure 29. The relationship between the do-nothing case, maximum emission 
reduction, and the target is shown in Figure 30(a). Figure 30(b) shows the predicted trajectory of the 
total number of electric vehicles; it indicates that the number of electric vehicles will greatly increase 
after 2040. Figure 30(c) shows that the investments in charging station installation should increase to 
provide around 2,200 stations by 2037 and remain at this level to support electric vehicle operation. 
We know that the earlier the charging stations are built, the more effective they are in electrifying 
driving distance; however, the later the charging stations are built, the lower the installation 
expenditure. Therefore, the required number of charging stations will keep increasing at first until 
reaching a critical coverage level and then remain at that same level until the end of the planning 
horizon.  

Figure 31 breaks down the electric vehicle share per cluster and the number of charging stations per 
cluster for the base case. From Figure 31(a), we see that the electric vehicle share for every cluster 
will greatly increase after 2040, which is also shown in Figure 30, where the electric vehicle share is 
much higher in 2050 compared to 2030 and 2040. Moreover, the result shows that cluster 5 will 
always have the highest electric vehicle share and lead the electrification transition, reaching 100% in 
2050; cluster 1 remains the lowest but can gradually reach about 60% in 2050; and clusters 2, 3, and 4 
will reach more than 80% electric vehicle share at the end of the planning horizon. These electric 
vehicle trajectories meet the set emission-reduction target with increasing investments in charging 
infrastructure in the first 15 to 18 years of the transition. Figure 31(b) shows the required number of 
charging stations for each cluster; it indicates that charging stations should be invested in the earliest 
and the most in cluster 1, which currently has the fewest charging stations. This result demonstrates 
the pressing need for allocating investments for rural electrification to accelerate electric vehicle 
adoption in such lagger regions. Electric vehicle transitions of lagger regions are very important for 
accruing emission savings for the state. Charging stations in clusters 2, 3, 4, and 5 should be installed 
and reach peak levels within the next 15 to 18 years. 
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Table 6. Results of the Do-Nothing Scenario 

Scenario Cluster Vehicle 
Type 2030 2040 2050 Emission reduction 

(mtCO2) 

Do-
nothing 

Cluster 1 
EV 5,758 25,457 160,775 

3.78∙ 105 
GV 260,655 240,956 105,638 

Cluster 2 
EV 53,032 193,018 682,193 

2.57∙ 106 
GV 763,398 623,412 134,237 

Cluster 3 
EV 74,748 256,113 827,107 

3.45∙ 106 
GV 906,301 724,936 153,942 

Cluster 4 
EV 567,291 1,507,540 3,510,779 

2.18∙ 107 
GV 3,310,894 2,370,645 367,406 

Cluster 5 
EV 296,382 638,745 1,081,750 

9.39∙ 106 
GV 785,368 443,005 0 

Total 
EV 997,212 2,620,873 6,262,604 

3.76∙ 107 
GV 6,026,615 4,402,954 761,223 

Note: GV stands for gasoline vehicle, and EV stands for electric vehicle. 

Table 7. Results of the Base Scenario 

Scenario Cluster Vehicle 
Type 2030 2040 2050 Emission reduction 

(mtCO2) 

Base 

Cluster 1 
EV 6,860 33,269 182,266 

4.86∙ 105 
GV 259,553 233,144 84,147 

Cluster 2 
EV 58,999 238,941 754,193 

3.16∙ 106 
GV 757,431 577,489 62,237 

Cluster 3 
EV 80,992 303,583 898,243 

4.06∙ 106 
GV 900,057 677,466 82,806 

Cluster 4 
EV 567,985 1,515,974 3,521,819 

2.19∙ 107 
GV 3,310,200 2,362,211 356,366 

Cluster 5 
EV 302,546 667,884 1,081,750 

9.87∙ 106 
GV 779,204 413,866 0 

Total 
EV 1,017,382 2,759,651 6,438,270 

3.95∙ 107 
GV 6,006,445 4,264,176 585,557 
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Table 8. Results of the Maximum Emission-Reduction Scenario 

Scenario Cluster Vehicle 
Type 2030 2040 2050 Emission reduction 

(mtCO2) 

Max 

Cluster 1 
EV 9,531 39,943 194,260 

5.94∙ 105 
GV 256,882 226,470 72,153 

Cluster 2 
EV 79,985 270,086 790,483 

3.75∙ 106 
GV 736,445 546,344 25,947 

Cluster 3 
EV 103,813 335,591 934,402 

4.68∙ 106 
GV 877,236 645,458 46,647 

Cluster 4 
EV 573,276 1,521,265 3,527,110 

2.20∙ 107 
GV 3,304,909 2,356,920 351,075 

Cluster 5 
EV 323,581 689,593 1,081,750 

1.04∙ 107 
GV 758,169 392,157 0 

Total 
EV 1,090,186 2,856,478 6,528,005 

4.14∙ 107 
GV 5,933,641 4,167,349 495,822 

 

 

 
Figure 29. Graph. Growth of electric vehicle adoption share in Illinois.  
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Figure 30. Graph. Optimization results: (a) emission reduction, (b) expected electric vehicle 

adoption, and (c) optimal number of charging stations to invest. 

 
Figure 31. Graph. (a) Electric vehicle registration shares per cluster and  

(b) number of charging stations to be deployed per cluster.  

Sensitivity Analyses 
We conduct sensitivity analyses for the state of Illinois case study. The analyses include evaluation of 
the impact of different parameters that denote home charging availability, electricity generation 
mixes to infer charging carbon intensity, traveler type distances, fuel price outlooks, and alternate 
planning horizons.  

The optimization results are shown in Figure 32 and Figure 33. The main findings are summarized as 
follows. Home charging levels have a great impact on emissions reduction. Figure 32(1-a) shows that 
the set emission-reduction target cannot be reached if home charging availability is 0%, 25%, 50%, 
and 75%. From Figure 32(1-c), we observe that when home charging availability is 100%, no charging 
stations are needed to achieve the emission-reduction target. This is because the electrified distances 
are longer and enabled by universal and reliable home charging access, and the operational cost of 
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drivers is lower since fewer backup gasoline vehicles are needed. In addition, lower operational costs 
also drive more electric vehicle adoption, as shown in Figure 32(1-b). 

Low renewable energy cost corresponds to a future where more renewable energy is integrated and 
used for electricity generation and, thus, a lower emission rate is associated with electricity 
production. Figure 32(2-a) demonstrates the huge differences in emission reductions for different 
electricity generation mixes: a less carbon-intensive electricity generation sector can lead to light-
duty vehicle electrification emission reduction that is much greater than the base scenario. Therefore, 
as shown in Figure 32(2-b) and Figure 32(2-c), even though the number of electric vehicles in the 
transition trajectories is similar for the two cases, no significant additional investment in charging 
stations would be required to reach the target in the low renewable energy cost case.  

Three types of travelers are tested based on their daily vehicle miles traveled: modest, average, and 
frequent. From Figure 32(3-c), we uncover that for modest drivers, their travel distance is, on 
average, short, and the demand for charging stations is lower. On the contrary, charging 
infrastructure extends the electrified distance of frequent drivers, who can effectively reduce 
operational costs.  

We also examine scenarios with low gas prices and high electricity prices as well as high gas prices 
and low electricity prices. From Figure 33(4-c), we learn that with high gas prices and low electricity 
prices, people will be more willing to purchase electric vehicles, and therefore, to meet the same 
emission-reduction target, fewer additional charging stations need to be provided. When 
experiencing high gas prices and low electricity prices, the emission reduction for the do-nothing 
scenario is higher than the target, as shown in Figure 33(4-a), and charging stations are still needed, 
as shown in Figure 33(4-c). This is because the emission reduction in Figure 33(4-a) is the summation 
of emission reductions for five clusters, and it does not mean that for every cluster the do-nothing 
scenario has a higher emission reduction than the target. In fact, additional charging station 
investments are still needed in counties in clusters 1, 2, and 3. 

Similar to the analysis of different fuel prices, if the planning horizon is 35 years, although the total 
emission reduction for the do-nothing scenario is higher than the target, charging stations are still 
required to meet the target. Figure 33(5-c) shows that to meet the same environmental quality 
target, having a longer planning horizon to achieve this reduction requires fewer chargers to be 
deployed. 
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Figure 32. Graph. Optimization results for sensitivity analysis scenarios, including (1) different 

home charging availabilities, (2) electricity generation mixes, and (3) traveler types.  
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Figure 33. Graph. Optimization results for sensitivity analysis scenarios, including (4) different fuel 

pricing outlooks and (5) alternative lengths of planning horizons.  

CONCLUSION 
We study the problem of dynamic electric vehicle charging investment allocation from the 
policymaker’s perspective, which aims to meet statewide emission-reduction targets for Illinois’ light-
duty vehicle sector. Our research introduces a new and dynamic electric vehicle charging deployment 
problem with emission-reduction targets and electric vehicle demand functions that capture network 
externalities, presents a simulated annealing algorithm to solve the highly nonlinear problem, and 
provides a plethora of policy and planning recommendations from real-world numerical experiments 
in Illinois. By evaluating diverse electric vehicle charging investment outcomes, we aim to 
comprehensively describe the decision-making mechanism and provide suggestions for infrastructure 
placement that incentivizes electric vehicle growth and transportation decarbonization. 
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CHAPTER 3: SUITABILITY MAPPING OF CHARGING 
INFRASTRUCTURE DEPLOYMENT 
The goal of this analysis is to develop a suitability map for siting of electric vehicle charging stations 
based on economic, societal, and environmental justice indicators. Using the analytic hierarchy 
process (AHP), commonly applied in multi-criteria decision-making for geographic information system 
applications, we provide information for an Illinois statewide deployment of charging infrastructure. 

SUITABILITY FEATURES 
There are numerous studies that aim to identify suitable regions for charging placement; AHP is a 
commonly employed approach to meet this objective. For instance, to select the suitable location for 
charging stations in Istanbul, Guler and Yomralioglu (2020) use AHP to weigh environmental and 
accessibility indices and fuzzy AHP for outcomes accuracy, underlining the importance of the process 
of determining weights. Similarly, Erbas et al. (2018) used fuzzy AHP and identified regions suitable to 
install new chargers in Ankara. Guo and Zhao (2015) use the same approach for new charging 
infrastructure placement in Beijing, including three indicators (economic, societal, environmental) 
and 11 features (ranging from land costs to construction noise impacts). Few studies incorporate 
justice criteria into the suitability mapping process. Our analysis considers the economic and social 
indicators that are expected to affect chargers’ siting but also evaluates Illinois census tract locations 
against quantitative environmental justice metrics, addressing environmental externalities concerns 
of disadvantaged communities in Illinois. Table 9 denotes features included in our charging suitability 
mapping process and their appearance in similar studies. 

Table 9. Charging Placement Criteria in Literature 

Features  Literature sources 

Inaccessibility of current charging Erbas et al. (2018) 

Service capabilities Guo and Zhao (2015); Erbas et al. (2018); Zhang et al. 
(2016); Zhai and Li (2016) 

Service radius Zhang et al. (2016); Zhai and Li (2016) 

Distance from the substations Erbas et al. (2018); Zhang et al. (2016); Zhai and Li (2016) 

Traffic convenience Zhai and Li (2016) 

Income rates Guler and Yomralioglu (2020) 

Traffic volume Guo and Zhao (2015); Erbas et al. (2018) 

Particulate matter concentration Guo and Zhao (2015) 
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The application of the AHP method to charging infrastructure siting suitability in Illinois stems from Al 
Garni and Awasthi (2017). First, we compare the relative importance of each 𝑛𝑛 feature to the rest in a 
judgment matrix 𝑀𝑀 = (𝑚𝑚𝑖𝑖,𝑗𝑗)𝑛𝑛×𝑛𝑛; the comparison scores should be obtained through expert 
elicitation and diverse stakeholders’ engagement. The relative importance of feature 𝑖𝑖 compared to 
feature 𝑗𝑗 is 𝑚𝑚𝑖𝑖,𝑗𝑗. Table 10 presents the comparison scores and their scales. Also, 𝑚𝑚𝑖𝑖,𝑗𝑗 has the 
reciprocal value of 𝑚𝑚𝑗𝑗,𝑖𝑖, with 𝑚𝑚𝑖𝑖,𝑗𝑗 × 𝑚𝑚𝑗𝑗,𝑖𝑖 = 1 and 𝑚𝑚𝑖𝑖,𝑖𝑖 = 0. 

Then, we normalize the judgment matrix based on the equation in Figure 34. 

𝑚𝑚𝚤𝚤,𝚥𝚥����� =
𝑚𝑚𝑖𝑖,𝑗𝑗

∑ 𝑚𝑚𝑖𝑖,𝑗𝑗
𝑛𝑛
1

 

Figure 34. Equation. Normalization function for judgment matrix.  

Each weight 𝑃𝑃𝑖𝑖  can be estimated from the cumulative 𝑚𝑚𝚤𝚤,𝚥𝚥����� of each row, based on the equation shown 
in Figure 35. 

𝑃𝑃𝑖𝑖 =
∑ 𝑚𝑚𝚤𝚤,𝚥𝚥�����𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 

Figure 35. Equation. Criteria weight equation. 

We perform a consistency check by following the equations in Figure 36. 

λ𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑛𝑛
�

(𝑀𝑀 × 𝑃𝑃)𝑖𝑖
𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝐶𝐶𝐶𝐶 =
λ𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛
𝑛𝑛 − 1

 

𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶
𝑅𝑅𝑅𝑅

 

Figure 36. Equation. Consistency check equations. 

In Figure 36, λ𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum characteristic root, 𝐶𝐶𝐶𝐶 is the consistency check factor, 𝑅𝑅𝑅𝑅 is the 
average random consistency factor, and 𝐶𝐶𝐶𝐶 is the consistency ratio. The consistency of the weight 
should meet the requirement of 𝐶𝐶𝐶𝐶 <  0.1. Otherwise, the judgment matrix needs to be adjusted 
(Ruan et al., 2014).  

The features we consider are aligned with existing literature in this field, and we provide their 
pertinent data sources in Table 11. We use openly accessible data, available at the census tract group 
level, and we present the analysis outcomes for 3,116 Illinois census tracts. We compare the mean 
and standard deviation of the variables in Table 12. These variables can be grouped into three 
indicators, representing economic, societal, and environmental justice drivers of electric vehicle 
charging station placement, integrating indicators that serve as a proxy for supply and social welfare 
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policymaking priorities. The schematic of the indicators’ structure and the datasets that comprise the 
suitability metric are shown in Figure 37. Plotting the spatial distribution of these features is 
conducted via natural breaks, which minimize the sum of squared deviation within classes and 
maximize the differences between each class, commonly used in the classification of continuous 
features. 

Table 10. Comparison Scores and Their Scale 

Scale Definition 
1 Equal importance of 𝑖𝑖 and 𝑗𝑗 
3 Moderate importance of 𝑖𝑖 over 𝑗𝑗 
5 Essential or strong importance of 𝑖𝑖 over 𝑗𝑗 
7 Very strong importance of 𝑖𝑖 over 𝑗𝑗 
9 Extreme importance of 𝑖𝑖 over 𝑗𝑗 

2,4,6,8 Intermediate values in between 

Table 11. Features Integrated in Charging Suitability Mapping for Illinois 

Parameters Data Source 

Total population (people per census tract) 2017 LATCH data (2012–2016 American 
Community Survey 5-year estimate tract data) 

Average vehicle miles traveled per person in a 
weekday (VMT) 2017 LATCH data 

Average household income (US $) 2017 LATCH data (2012–2016 American 
Community Survey 5-year estimate tract data) 

No. of vehicles that level 2 charging plugs 
could serve 

Calculated using Alternative Fuels Data Center 
data, accessed in 2022 

No. of vehicles that level 3 charging plugs 
could serve 

Calculated using Alternative Fuels Data Center 
data, accessed in 2022 

Locations of substations U.S. Department of Energy, accessed in 2022 

Disadvantaged community indicator (binary) U.S. Department of Energy, accessed in 2022 

No. of vehicle registrations (vehicles) 2012–2016 American Community Survey 5-
year estimate tract data 

Levels of PM2.5 in the air �𝑢𝑢𝑢𝑢
𝑚𝑚3�    EPA’s Environmental Justice Screening and 

Mapping Tool, accessed in 2022 

AADT on major roads    EPA’s Environmental Justice Screening and 
Mapping Tool, accessed in 2022 

Share of racial minorities (%) EPA’s Environmental Justice Screening and 
Mapping Tool, accessed in 2022 
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Table 12. Descriptive Statistics of Features That Compose Suitability Indicators 

Variables Mean Standard 
Deviation Min Max Unit 

Inaccessibility 
of EVCS 0.807 0.120 0.00 1.00 % 

Substation 
proximity 0.232 0.135 0.00 1.00 % 

Traffic 
proximity 818.320 1601.541 0.003 22,114.272 No. of 

vehicles 
Household 

income 61,178.487 29,750.901 5,736.00 240,000.00 US Dollars ($) 

PM 2.5 
Concentration 9.941 0.631 8.363 10.974 𝑢𝑢𝑢𝑢/𝑚𝑚3 

Minorities 
share 0.402 0.321 0.00 1.00 % 

Disadvantaged 
communities 0.200 0.400 0.00 1.00 Binary 

Note: EVCS stands for electric vehicle charging station, and PM stands for particulate matter. 

 

 
Figure 37. Graph. Indicators and features used in charging suitability mapping for Illinois. 
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Economic Indicators 
One of the key considerations for charging station installation and its investors is cost-effectiveness 
(Kchaou-Boujelben, 2021). We consider the economics when proposing suitable locations for electric 
vehicle charging stations’ siting. Two economic criteria are used that are aligned with prospective 
investors’ objectives for coverage of demand and installation cost minimization. We measure the 
inaccessibility of charging based on current vehicle adoption and charging infrastructure levels since 
gaps in inaccessibility will need to be filled by additional charger deployment. We also report the 
distance from the electrical infrastructure since it is cost-effective to place new charging stations near 
existing substations to reduce the costs of electrical infrastructure upgrades for sufficient electrical 
capacity. 

Current Inaccessibility of Charging Stations in Illinois 
To quantify charging inaccessibility in Illinois, we measure accessibility and the level of service that is 
currently provided by level 2 (L2) and level 3 (L3) charging stations, as proposed by Traut and 
Wolfinbarger (2021). We assume a different radius of influence for each charging power level. We 
choose 15 miles and 50 miles for L2 and L3 stations, respectively, to enable people who are pursuing 
various activities within these driving mileages during the day to recharge in specific destinations or 
en-route. We assume that each charging station can be used by all the vehicles in its buffer of 
influence uniformly. 

We calculate the number of vehicles (under a universal electrification scenario) that could be charged 
by one level 2 and one level 3 plug per unit of area. The input parameters for the calculation are the 
average charging rate of each charger’s power level, the utilization rate of the charger—i.e., the 
average number of hours a current charger is used over a day (FreeWire Technologies, 2022), and the 
average daily driving distance per vehicle in each spatial unit of analysis, as shown in Figure 38. 

𝐸𝐸2𝑗𝑗 =
𝐶𝐶2𝑈𝑈2
𝐷𝐷𝑗𝑗𝐴𝐴𝑘𝑘

 

𝐸𝐸3𝑗𝑗 =
𝐶𝐶3𝑈𝑈3
𝐷𝐷𝑗𝑗𝐴𝐴𝑘𝑘

 

Figure 38. Equation. Charger capability. 

For each census tract 𝑗𝑗, 𝐷𝐷𝑗𝑗  are the average daily vehicle miles traveled that will need to be recharged. 
We set 𝐶𝐶2 = 23 miles per hour, 𝐶𝐶3 = 6.667 miles per minute, while 𝑈𝑈2 = 8 hours and 𝑈𝑈3 = 3 hours, 
representative of the charging rate and utilization rate for L2 and L3 charging ports, respectively. 𝐴𝐴𝐾𝐾  
is the sum population of the number of vehicles in station 𝑘𝑘’s service area. 𝐸𝐸2𝑗𝑗 and 𝐸𝐸3𝑗𝑗 are the 
average numbers of vehicles that could be served by one level 2 and one level 3 charging plug divided 
by the population in the census tract respectively. 
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We sum up the total number of vehicles that could be served based on the number and the level of 
charging ports in each census tract as 𝑇𝑇𝑗𝑗, shown in Figure 39. For each census tract j, there are 𝑁𝑁2,𝑗𝑗 
numbers of level 2 charging ports and 𝑁𝑁3,𝑗𝑗 numbers of level 3 charging ports. 𝑃𝑃𝑃𝑃𝑝𝑝𝑗𝑗 is the total 
population in 𝑗𝑗. 

𝑇𝑇𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑝𝑝𝑗𝑗 �� 𝐸𝐸2𝑗𝑗

𝑁𝑁2,𝑗𝑗

𝑖𝑖1=1

+ � 𝐸𝐸3𝑗𝑗

𝑁𝑁3,𝑗𝑗

𝑖𝑖2=1

� 

Figure 39. Equation. Total number of vehicles served by current charging infrastructure.  

We compare the number of vehicles that can be served, 𝑇𝑇𝑗𝑗, with the total number of vehicles, 𝑉𝑉𝑗𝑗, in 
each census tract, as in shown in the equation in Figure 40. 

𝐼𝐼𝐴𝐴𝑗𝑗 = �1−
𝑇𝑇𝑗𝑗
𝑉𝑉𝑗𝑗
� × 100 

Figure 40. Equation. Inaccessibility of charging stations at each census tract.  

The inaccessibility map requires frequent updates of the location and the power level of the current 
charging infrastructure, as well as the current distribution of vehicle registrations, to be accurately 
measured. Electric vehicle charging station inaccessibility measures how many vehicles cannot be 
accommodated by the current charging stations and points out the areas that lack such infrastructure 
investments.  

Figure 41 displays the current levels of charging inaccessibility map for (a) Illinois and (b) the city of 
Chicago, respectively. The distribution of inaccessibility values is shown in Figure 42(a). The 
inaccessibility value is calculated for 3,080 tracts, while the missing values are because the aggregate 
number of vehicles for the rest of the tracts is not available. In Illinois, 353 tracts endure extreme 
charging station inaccessibility, having a value greater value than 91%. None of those tracts are in the 
Chicago region. Extreme charging station inaccessibility regions are mostly in Illinois rural areas, such 
as Hardin, Carroll, and Fulton counties. More than half of the census tracts are characterized by high 
charging inaccessibility (1,639 tracts under 80% of inaccessibility). The mean inaccessibility rate is 
73.3% in the Chicago region while 22.7% of tracts in this metropolis are characterized by high 
inaccessibility. Highly unreachable areas for charging stations are in Garfield Ridge, Clearing, Ashburn, 
Beverly, Mount Greenwood, Hegewisch, and around O’Hare. 
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(a) State of Illinois (b) City of Chicago 

Figure 41. Graph. Maps of current level of charging inaccessibility (%). 

  
(a) Inaccessibility rate of charging  (b) Substation proximity 

Figure 42. Graph. Distributions of (a) charging inaccessibility and (b) charging proximity.  
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Electrical Infrastructure 
The locations of all substations in Illinois stem from data available through the Energy Zones Mapping 
Tool (U.S. Department of Energy, 2022a). We depict the number of transmission lines. We use the 
inverse distance weighted method to weight the number of transmission lines by the distance from 
the nearby substations (ArcGIS Pro 3.0, 2022), as shown in Figure 43. We choose 𝑝𝑝 = 2 and assign 
greater weight to the number of transmission lines that connect to each substation, which can serve 
as a proxy of the transmission lines’ capacity. We plot a raster spatial heat map that portrays the 
number of transmission lines per unit area. By converting the raster map to a vector one and by 
summing up the average proximity value, we obtain the substation proximity map, as in Figure 44. 
The values distribution in the map is based on percentiles of the weighted distance from transmission 
lines capacity. 

 
Figure 43. Graph. Decrease of relative weight with distance, under different 𝒑𝒑 values. 

Source: ArcGIS 10.3 (2022) 

The color represents the average number of transmission lines in each census tract. Darker colors 
indicate higher proximity to substations, where it is more economical to install a charger. The 
distribution of the proximity to substations is shown in Figure 42(b). Regarding the statewide map in 
Figure 44(a), 27.2% of census tracts have high charging suitability (0.28–0.35) and 7.0% of tracts have 
a very high charging suitability (> 0.35), due to their proximity to substations. The major high 
suitability areas are in the suburban and collar counties. In Chicago, West Lawn, Chicago Lawn, 
Ashburn, and South Deering are closer to electrical infrastructure. The Chicago region has a relative 
low mean value (13.9%) of electric infrastructure proximity compared to the Illinois region, which 
might pose a barrier to installation of high-power charging hubs. 
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(a) State of Illinois (b) City of Chicago 

Figure 44. Graph. Substation proximity maps. 

Social Indicators 
Besides economic indicators, identifying regions for charging deployment also needs to be driven by 
socioeconomic indicators to ensure greater utilization of the sited infrastructure. Census tracts are 
evaluated based on two societal criteria: income and traffic proximity. 

Income 
We account for the average household income in each census tract (Jansson et al., 2018); there are 
11 tracts with a missing average household income value, due to not having residents. Populations of 
greater income are currently leading the electrification transition (Noel et al., 2020; Mukherjee & 
Ryan, 2020). As shown in Figure 45, darker areas represent areas with higher income, which are 
currently more likely to host a population that, in the short run, is more likely to purchase and 
operate an electric vehicle; accessibility consideration for different socioeconomic groups will be 
mitigated when introducing environmental justice factors. The distribution of the income map is 
shown in Figure 46(a), where 2.8% of tracts are highlighted as leaders and 14.6% of tracts are 
considered moderate candidates to lead the transition to passenger vehicle electrification. Leader 
groups are mostly located in suburban collar counties in Illinois. Figure 45(b) shows prospective 
regions to lead the transition to electric vehicles are in central Chicago. Fewer high-income 
households live in the Chicago region than in other places in Illinois (only 1.3% of tracts are 
considered very high-income regions). 
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(a) State of Illinois (b) City of Chicago 

Figure 45. Graph. Income distribution maps. 

 

  

(a) Income (b) Traffic proximity 

Figure 46. Graph. Distributions of income and traffic proximity. 
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Traffic Proximity 
We use the traffic volume data as a proxy of electric vehicle charging demand since the growth of the 
electric vehicle penetration level will result in the substitution of fossil-fueled vehicles on the road 
(Arias & Bae, 2016; Harris & Webber, 2014). The traffic proximity map represents the average annual 
daily traffic (AADT) on major roads (within 500 meters). Figure 46(b) reveals the distribution of the 
traffic proximity map values. The darker color shows higher suitability for building electric vehicle 
charging stations. A subset of 3,066 tracts has an available estimated traffic proximity value for the 
Illinois region. We use the quantiles classification scheme to measure traffic proximity. There are a 
few tracts that are highlighted, like Blackhawk Township in Rock Island, St. Clair near St. Louis, 
Dekalb, Tazewell, and Menard. Figure 47(a) reveals that the traffic proximity could be associated with 
Illinois interstate routes, and high-suitability electric vehicle charging sites can be found at the 
intersections of interstate routes. Despite that, more than half of the high traffic proximity (greater 
than 930 vehicles) tracts are in Chicago (359 of 611 census tracts) urban and suburban regions and 
are distributed in a radial pattern. Likewise, the four darker color lines in Figure 47(b) are consistent 
with the four interstate lines. The area close to Lake Michigan has high traffic proximity and, thus, 
charging station deployment suitability. 

  
(a) State of Illinois (b) City of Chicago 

Figure 47. Graph. Traffic proximity (AADT) distribution maps. 
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Environmental Justice Indicators 
The Justice40 initiative directs 40% of overall benefits of certain federal investments to flow into 
disadvantaged communities. A major goal of establishing an environmental justice indicator in this 
suitability analysis is to mitigate environmental injustices and enable better accessibility to charge for 
marginalized and disadvantaged communities (White House, 2021a, 2021b). Three features were 
selected to represent environmental and distributive charging access proxies. 

Disadvantaged Communities 
Disadvantaged communities are communities that are impacted by compounded burdens related to 
transportation access and health, environmental, economic, resilience, and social disadvantages (U.S. 
Department of Energy, 2022). The disadvantaged regions designated in Illinois are highlighted in 
Figure 48. Note that 610 communities are considered disadvantaged communities, and 405 of them 
are found in the Chicago region. Most of the disadvantaged census tracts are in Chicago’s south and 
western regions. 

 
 

(a) State of Illinois (b) City of Chicago 

Figure 48. Graph. Disadvantaged communities (binary) maps. 

Minorities Share 
This feature represents the percentage of racial minorities; people of color experience greater energy 
burdens and compound energy vulnerability while being disproportionately affected by pollutants 
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(Chambliss et al., 2021; Price et al., 2021; Hsu & Fingerman, 2021). The distribution map is found in 
Figure 50(a). Figure 49 reveals the regions with a high share of minorities that can be selected to 
improve accessibility to charging for these underserved populations. The Chicago region has a high 
concentration of minorities located in the southwest; 398 disadvantaged tracts are in Chicago while 
586 tracts are in Illinois regions. Besides the Chicago region, tracts like St. Clair, Pulaski, Ogle, and 
Iroquois counties are highlighted. 

 
 

(a) State of Illinois (b) City of Chicago 

Figure 49. Graph. Minorities share (%) distribution maps. 

  
(a) Minorities share (b) PM 2.5 concentration  

Figure 50. Graph. Distributions of (a) minorities share and (b) PM 2.5 concentration. 
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Particulate Matter 2.5 Concentration 
Particulate matter (PM) 2.5 is an air pollutant that can severely impact health, particularly for 
vulnerable populations suffering from respiratory and heart diseases (Chambliss et al., 2021; Monaco 
et al., 2015). PM 2.5 levels in the air are a proxy to evaluate environmental justice among different 
communities. The distribution of PM 2.5 concentration values is shown in Figure 51(b). As shown in 
Figure 50, there are high PM 2.5 concentration values in Chicago and the collar counties region, which 
could be more suitable for charging station siting. Charging station siting can accelerate ownership 
and use of electric vehicles, which can reduce environmental externalities of passenger 
transportation and improve local air quality. 

 

 

(a) State of Illinois (b) City of Chicago 

Figure 51. Graph. PM 2.5 concentration �𝝁𝝁𝝁𝝁
𝒎𝒎𝟑𝟑� distribution maps. 

ILLINOIS CHARGING SUITABILITY MAPPING RESULTS 
We weight the features that comprise the suitability indicators based on the rank scores shown in 
Table 13. Alternative ranking approaches would significantly impact the result for charging station 
siting suitability. Under weight assignments W1, W2, and W3, we are only considering the individual 
effect of economic, social, and environmental justice indicators, respectively, on charging suitability. 
Weight assignment W4 reflects equal weighting of the three indicators, while W5 assigns a higher 
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weight to the economic indicator. The resulting weight values (W6) for expert elicitation and 
stakeholder feedback data collection are found in Table 14. This is obtained by calculating the main 
value of weights assigned to the criteria by a diverse set of stakeholders in Illinois who represent 
various sectors (25% from the public sector, 25% from the nonprofit sector, 37.5% from industry, and 
12.5% from academia). Using the derived judgment matrix from the AHP method, as in Table 15 we 
have 𝑅𝑅𝑅𝑅 = 1.32 (Hassan et al., 2017) and 𝐶𝐶𝐶𝐶 = 0.08, showing that the result is satisfactory. 

Table 13. Example Weights of Charging Suitability Indicators 

Ranking approach W1 W2 W3 W4 W5 W6 

Inaccessibility of EVCS 1/2 0 0 1/7 3/11 0.138 

Substation proximity 1/2 0 0 1/7 3/11 0.114 

Household income 0 1/2 0 1/7 1/11 0.132 

Traffic proximity 0 1/2 0 1/7 1/11 0.150 

Minorities share 0 0 1/3 1/7 1/11 0.122 

PM 2.5 concentration 0 0 1/3 1/7 1/11 0.526 

Disadvantaged communities 0 0 1/3 1/7 1/6 0.192 

Table 14. Features Evaluation Form, Used to Derive W6 Weighting Assignment 

Indicators I1 I2 I3 I4 I5 I6 I7 

Inaccessibility of EVCS (I1) 1 4 0.33 3 3 1 1 

Electrical Infrastructure (I2) 0.25 1 0.33 3 0.33 1 0.33 

Income (I3) 3 3 1 5 1 3 1 

Traffic Proximity (I4) 0.33 0.33 0.2 1 0.2 0.33 0.33 

People of Color (I5) 0.33 3 1 5 1 1 0.20 

PM 2.5 Concentration (I6) 1 1 0.33 3 1 1 1/3 

Disadvantaged Region (I7) 1 3 1 3 5 3 1 

Table 15. AHP Weighting Results 

Indicators Weight 
Inaccessibility of EVCS (I1) 0.1729 

Electrical Infrastructure (I2) 0.0737 
Income (I3) 0.2429 

Traffic Proximity (I4) 0.0414 
People of Color (I5) 0.1329 

PM2.5 concentration (I6) 0.0975 
Disadvantaged Region (I7) 0.2387 
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Charging Station Siting Suitability Maps 

The suitability mapping that accounts only for the social indicator (Figure 53) stands out since it 
highlights different regions than the rest of the maps in Figures 52 and 54 (i.e., economic and justice 
ones), compared with the other two single-weighted indicator maps. This is expected since the social 
indicator reinforces the need for charging deployment in affluent and busy in terms of traffic regions, 
while the rest of the indicators highlight charging siting needs in charging underserved and 
historically disadvantaged regions. Figure 53(b) reveals that the northwest parts of Chicago are 
suitable regions for charging deployment, but Figure 52(b) and Figure 54(b) show the southeast part 
of Chicago to be preferable for charger installation. From the economic perspective in Figure 52(a), 
256 tracts are highlighted for new charging infrastructure placement, mainly in Stephenson, 
Winnebago, and Ford counties. While considering the environmental justice perspective in Figure 
54(a), there are 504 tracts suitable as charging locations, primarily in St. Clair and Cook counties (378 
of them are in the Chicago region).  

 
(a) State of Illinois    (b) City of Chicago 

Figure 52. Graph. Charging suitability mapping including only economic indicators (W1). 
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(a) State of Illinois    (b) City of Chicago 

Figure 53. Graph. Charging suitability mapping including only societal indicators (W2). 

 
(a) State of Illinois    (b) City of Chicago 

Figure 54. Graph. Charging suitability mapping including only environmental justice indicators (W3). 
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Figure 56 presents the distribution of the suitability metric among different weighting assignments 
for urban and rural regions in the state of Illinois. Urban regions differ from rural regions based on 
the population density in each census tract. If the density is greater than 1,500 people per square 
kilometer, then the census tract is classified as an urban area; otherwise, it is a rural one (Dijkstra et 
al., 2020). The heavily economic-weighted suitability map has a mean value of 51.91%, with rural 
regions slightly more suitable for charger deployment than urban regions. The heavily social-
weighted perspective has a lower suitability outcome (mean value of 13.72%). Compared with rural 
areas, the median suitability of urban areas is relatively larger with smaller variance. There is a 
notable suitability difference between rural and urban areas. We can observe that rural areas are 
more suitable for charging placement when the environmental justice indicator is the sole one in the 
suitability analysis. 

 

 
(a) Economic indicators (W1)    (b) Social indicators (W2) 

 
(c) Environmental justice indicators (W3) 

Figure 55. Graph. Distributions of suitability metrics, under W1, W2, and W3 weighting schemes.  



41 

 
Figure 56. Graph. Box plot of the three indicators and their individual impact on  

charging station siting suitability. 

 

Multi-Criteria Charging Station Siting Suitability Maps 
Similarly, we evaluate the outcome of the assignment of weights 𝑤𝑤4, 𝑤𝑤5, and 𝑤𝑤6, as shown in Figures 
57, 58, and 59, respectively. The suitability maps obtained by the three weighting methods have 
similarities. We observe that the diverse stakeholders’ elicitation weighting result is approximately 
equal to the equal weights mapping. Both maps emphasize the same tracts, both in Illinois and 
Chicago. Moreover, the suitability values follow a similar distribution. Therefore, we can use the 
equal weights map to identify potential electric vehicle placement locations. Then, we compare the 
equal weights map and the higher economic value siting results. There is high suitability in the south 
and east regions of Chicago on the equal weights map, while the economic preference map has a few 
areas of high suitability in southeast Chicago (e.g., Ashburn, West Lawn, Chicago Lawn, Gage Park, 
Archer Heights, and the east side). 
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(a) State of Illinois    (b) City of Chicago 

Figure 57. Graph. Multi-criteria charging siting suitability maps with equal weights (W4). 

 
(a) State of Illinois    (b) City of Chicago 

Figure 58. Graph. Multi-criteria charging siting suitability maps with highly valued economic 
weights (W5). 
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(a) State of Illinois   (b) City of Chicago 

Figure 59. Graph. Multi-criteria charging siting suitability maps with AHP weights (W6) from diverse 
stakeholders’ feedback elicitation process. 

 

As shown in Figure 61, the trend of charging suitability is the same for the three weighting 
assignments, with rural areas having a higher suitability score than urban ones. However, the 
economic preferences option has higher suitability than the outcome of the equal weight for rural 
and urban regions, and the median suitability difference between cities and rural regions is larger. 
Considering all three factors simultaneously significantly reduces the number of outliers compared to 
the single-factor suitability results, owing to a more comprehensive consideration that makes the 
charging siting recommendation results more robust and the values more reliable. 
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(a) W4 suitability values distribution  (b) W5 suitability values distribution 

 
(c) W6 suitability values distribution 

Figure 60. Graph. Distributions of charging siting suitability values for equal weights, higher 
economic weights, and AHP weights from stakeholders’ elicitation. 

 
Figure 61. Graph. Box plot of the three types of weighting results for charging siting suitability: 

equal weights, stakeholders’ elicitation weights, and higher economic weights. 
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Integrating Commercial Activity Indicator into Charging Suitability Maps 
The employment density indicator is computed using employment per square miles (leveraging 
census data) as a commercial activity indicator. The darker the color, the more commercial activity is 
generated, which means more travelers will pass through/stay in the area, leading to more demand 
for electric vehicle charging in the current tract. Strong active areas are concentrated in Cook County, 
as shown in Figure 62. There are 14 extremely active census tracts and 83 highly active tracts, all of 
which are in the northwest Chicago region.  

We integrated the commercial activity indicator into the economic siting criteria under the equal 
weights assumption for charging suitability mapping. The result is shown in Figure 64. Compared to 
the original map, the overall mean suitability value was reduced from 36.10% to 32.04%. The number 
of high-charging suitability census tracks dropped from 500 to 479 in Illinois, which includes reducing 
358 highly recommended tracks for siting to 352. The integration of the employee’s density did not 
produce a change in the distribution of the equal weights suitability values, indicating that the 
employee density map can reflect the suitability of charging placement to some extent. 

 

  
(a) State of Illinois (b) City of Chicago 

Figure 62. Graph. Employment density (employees per square mile) maps. 
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(a) Employment density (b) Equal weights map with employment 
share feature added 

Figure 63. Graph. Distributions of (a) employment density and (b) charging siting suitability values 
with employment density integration. 

  
(a) State of Illinois (b) City of Chicago 

Figure 64. Graph. Equal weights charging siting suitability map with employment share. 
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Interstate charging infrastructure deployment is critical in enabling electric vehicle corridors 
(according to the FHWA definition). Note that 27 interstates and major highways traverse the Illinois 
region. I-57 passes through the greatest number of the state of Illinois census tracts (99 tracts). What 
is more, I-55 (94 tracts) and I-90 (81 tracts) go through multiple census tracts. We identify interstate 
and highway sections that should be prioritized based on the Illinois census tracts with a larger mean 
electric vehicle charging siting suitability. The suitability result underscores two interstates as 
priorities: I-90 and I-80, which have average suitability of 52.7% and 48.5%, respectively. Most of the 
interstates’ tracts mentioned earlier are in the vicinity of Chicago. According to the geographical 
distribution of the suitability scores, east–west highways are traversing tracts that have higher 
charging station siting suitability than north–south highways. The north–south interstates and major 
highways, such as I-55 and I-57, should also be prioritized to meet the need for long-distance travel 
facilitated by en-route charging. 

DISCUSSION 
While eliciting feedback from diverse stakeholders during the second electric vehicle steering 
committee meeting, we collected feedback on the prioritization of the criteria to determine the 
charging station siting location. The weighting of the criteria revealed uniform preferences of weights 
among economic, societal, and environmental indicators. Some useful suggestions were also 
provided during these meetings. For example, stakeholders suggest evaluating the timeline for 
workforce development and recruitment in the suitability of charging siting. Charging infrastructure 
investments could lead to the growth of workforce development in disadvantaged regions, which is 
an additional benefit attributed to the advent of the electric vehicle market. Other comments 
underscore the trade-offs between installing charging stations in charging deserts to drive demand 
and adding more charging where electric vehicle adoption is growing to serve those drivers.  

Our analysis considers the economic and social indicators expected to affect electric vehicle charging 
station siting but also evaluates Illinois census tract locations against quantitative environmental 
justice metrics, addressing environmental externalities concerns of disadvantaged communities in 
our state. The charging suitability mapping results highlight the southwest side of Chicago, which 
poses high suitability for future charging station placement. Multiple factors contribute to this 
outcome, including the high traffic proximity, substation proximity, high minorities share, high PM 2.5 
concentration, and disadvantaged communities. Note that changing the weights of this process will 
result in different suitability outcomes. The weights provided are indicative, while University of Illinois 
researchers elicited feedback from diverse stakeholders and uncovered uniform weight assignment 
for the multiple economic, societal, and environmental justice criteria. In the future, insights into the 
priorities of decision-makers and stakeholders invested in passenger vehicle electrification should be 
further investigated as electric vehicle registrations rise. While our analysis demonstrated the criteria 
and applied algorithms to guide future electric vehicle charging station placement, the results should 
be interpreted with an understanding of the limitations of the data and the need for continuous 
updates of the data inputs that change annually or even monthly. A range of programs (federal, state, 
and local) are underway to promote electric vehicle adoption and use. At the same time, investments 
in transportation electrification are expected to affect demand and priorities for electric vehicle 
charging station placement.  
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